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The stationary critical properties of the isotropic majority vote model on random lattices with quenched
connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical
exponentsg and b are found to be different from those of the Ising and majority vote on the square lattice
model and the critical noise parameter is found to beqc=0.117±0.005.
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I. INTRODUCTION

Random lattices play an important role in the description
of idealized statistical geometry in a great variety of fields
f1–4g. Besides its potential to describe the topology in sev-
eral condensed matter problems, the comparison of the uni-
versality class of systems between random and regular lat-
tices is also the subject of intense researchf5–9g. The
randomness considered in these studies were either by ran-
dom variation of the coupling strengths, random deletion of
bonds or sites, or by spatially correlated lattices. In particu-
lar, according to the Harris criterionf7g valid for the random-
bond paradigm, random disorder is marginally important to
the two-dimensional Ising model since the specific heat criti-
cal exponent isa=0. However, this criterion could not be
applied to lattices with a nonperiodic coordination number.
For these models, Luckf10g formulated a criterion to such
cases. For example, Jankeet al. f11g, using the single-cluster
Monte Carlo update algorithmf12g, reweighting techniques
f13g, and size scaling analysisf14g, simulate the Ising model
in a two-dimensional Voronoy-Delaunay random lattice.
They calculated the critical exponents and found that this
random system belongs to the same universality class as the
pure-two-dimensional ferromagnetic Ising model.

The Voronoi-Delaunay network is a type of disordered
lattice exhibiting a random coordination number that varies
from 3 to `, depending on the number of sites. In addition,
the distancer between nearest neighbors changes in a ran-
dom way from site to site. Limaet al. used a two-
dimensional Voronoi-Delaunay lattice to study the ferromag-
netic Ising modelf15g and the Potts modelf16g. As the bond
length between the first neighbors varies randomly from
neighbor to neighbor, they considered a coupling factor de-
caying exponentially as

Jij = J0exps− arijd, s1d

wherer ij is the relative distance between sitesi and j , J0 is
a constant, andaù0 is a model parameter. In Ref.f15g they
calculated the critical point exponentsg /n , b /n, andn, and
concluded that this random system belongs to the same uni-
versality class as the pure-two dimensional ferromagnetic
Ising model. In Ref.f16g they studied the three-state Potts
model and found that critical exponentsg andn are different
from the respective exponents of the three-state Potts model

on a regular square lattice. However, a ratiog /n remains
essentially the same. They also found numerical evidences
that the specific heat on this random system behaves as a
power law for a=0 and as a logarithmic divergence fora
=0.5 anda=1.0.

It has been argued that nonequilibrium stochastic spin
systems on regular square lattice with up-down symmetry
fall in the universality class of the equilibrium Ising model
f17g. This conjecture was found in several models that do not
obey detailed balancef18–20g. Camposet al. f21g investi-
gated the majority-vote model on small-world network by
rewiring the two-dimensional square lattice. These small-
world networks, aside from presenting quenched disorder,
also possess long-range interactions. They found that the
critical exponentsg /n and b /n are different from the Ising
model and depend on the rewiring probability. However, it
was not evident that the exponents change was due to the
disordered nature of the network or due to the presence of
long-range interactions.

Here, we analyze a relatively simple nonequilibrium
model with up-down symmetry in a random lattice with
quenchedconnectivitydisordersa=0d, namely the isotropic
majority vote modelf22g. Our main motivation is to investi-
gate whether only the presence of quenched lattice disorder
is capable of modifyng the exponentsg /n andb /n using the
Voronoi-Delaunay random lattice. Our numerical results sug-
gest that the critical exponents, in the stationary state, are
different from those of the Ising model and the isotropic
majority vote model on a square lattice. In what follows we
will utilize Monte Carlo simulations and finite-size analysis.

II. MODEL AND SIMULATION

For each point in a given set of points in a plane, we
determine the polygonal cell that contains the region of space
nearest to that point than any other. We considered two cells
neighbors when they possess an extremity in common. From
this Voronoi tessellation, we can obtain the dual lattice by the
following procedure.

sad When two cells are neighbors, a link is placed be-
tween the two points located in the cells.

sbd From the links, we obtain the triangulation of
space that is called the Delaunay lattice.

scd The Delaunay lattice is dual to the Voronoi tessel-
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lation in the sense that its points correspond to cells, links to
edges and triangles to the vertices of the Voronoi tessellation.
We consider a two-dimensional majority vote model, on this
Poissonian random lattice, definedf22,23g by a set of “vot-
ers” or spins variableshsij taking the values +1 or −1, situ-
ated on every site of a Delaunay lattice withN sites and
periodic boundary conditions, and evolving in time by single
spin-flip like dynamics with a probabilitywi given by

wissd =
1

2F1 − s1 − 2qdsiSSo
d

si+dDG , s2d

whereSsxd=sgnsxd if xÞ0, Ssxd=0 if x=0, and the sum runs
over all nearest neighbors ofsi. In this lattice, the coordina-
tion number varies locally between 3 and̀. The control
parameterq plays the role of temperature in equilibrium sys-
tems and measures the probability of aligning antiparallel to
the majority of neighbors.

For simplicity, the length of the system is defined here in
terms of the size of a regular lattice,L=N1/2. We perform
simulations for different lattice sizesN=2i, where i varies
from 8 to 14. For each size, we generated 50 randomly cho-
sen lattice realizations, where each simulation started with a
random configuration of spins. From a given configuration,
the next one was obtained as follows.sad Choose a spinhij at
random.sbd Generate a random numberr uniformly distrib-
uted between zero and one.scd Flip spin i whenr ,wissd. In
our simulations, 53104 Monte Carlo steps were required for
attaining the stationary state. After that, we estimated the
averages, for any lattice size, using 105 Monte Carlo steps.

We define the variablem=oi=1
N si /N. In particular, we

were interested in the magnetizationf22,24g, susceptibility
and the reduced fourth-order cumulant:

msqd = fkumulgav, s3d

xsqd = Nfkm2l − kumul2gav, s4d

Usqd = F1 −
km4l

3kumul2G
av

, s5d

wherek¯l stands for a thermodynamics average andf¯gav
square brackets for averages over the 50 realizations. We
calculated the error bars from the fluctuations among realiza-
tions. Note that these errors contain both, the average ther-
modynamic error for a given realization and the theoretical
variance for infinitely accurate thermodynamic averages
which is caused by the variation of the quenched random
geometry of the 50 lattices.

These quantities are functions of the noise parameterq
and obey the finite-size scaling relations

fkumulgav = L−b/nfmsxdf1 + ¯ g, s6d

x = L−g/nfxsxdf1 + ¯ g, s7d

dU

dq
= L1/nfUsxdf1 + ¯ g, s8d

wheren , b, andg are the usual critical exponents,f isxd are
the finite size scaling functions with

x = sq − qcdL1/n s9d

being the scaling variable, and the bracketsf1+¯ g indicate
corrections-to-scaling terms.

III. RESULTS

In Fig. 1 the magnetization is shown as a function of the
noise parametersqd for several values ofL. As can be no-
ticed there is a phase transition from an ordered statesML

.0d to a disordered statesML<0d. This figure displays that
for q.qc the magnetization disappears when larger values of
L are considered, whereas it reaches a finite value forq

FIG. 1. Magnetizationmsqd as a function of the noise parameter
q for several values of the system sizeN.

FIG. 2. Log-log plot of the magnetization atq=qc versusL. The
solid line is the best fit with slope −b /n=−0.112s4d.
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,qc. In Fig. 2 a log-log plot of the magnetization atq=qc
versusL is shown. The ratio between the critical exponent
b /n=0.112±0.004 is the slope of the straight line fitted to
the data points. Within the numerical accuracy, we found that
these exponents are distinct from the exponents characteriz-
ing the class of universality of the equilibrium Ising model
f22g.

To determinate the critical point the reduced fourth-order
cumulantU is plotted againstq. In Fig. 3, the critical pointqc
is estimated when all curves, for different sizesL, intersect in
the same point. We getqc=0.117±0.005 and U*
=0.61±0.02. The value ofU* is, considering the error bar,
the same as the one obtained for Ising model on a square
lattice with periodic boundary conditionsU* =0.611±0.001.
Another way of getting the critical point is through the rela-
tion of scale qmax

x sLd=qc+aL−1/n, where we get qc

=0.117±0.003 usingn=1.06.

To obtain the critical exponentn, we calculated numeri-
cally U8sqd=dUsqd /dq at the critical point for each value of
L. The results are in good agreement with the scaling relation
s7d. Then, we plotted lnU8 versus lnL, as displayed in Fig 4.
The straight line represents the best fit to the data points. The
slope gives 1/n=0.94±0.06, which corresponds ton
=1.06±0.08.

In Fig. 5, we have lnxsqd as a function ofq for several
values ofL. In order to study the universality of the model,
the ratiog /n was estimated from the log-log plot of the value
of the susceptibilityxsqcd versusL. We estimated the critical
exponentg /n=1.51±0.04 from the best fit of data points, as
displayed in Fig. 6. It is worth mentioning that in Figs. 1, 3,
and 5 we do not includeL=128 because of its large compu-
tational demand.

FIG. 3. Reduced fourth-order cumulantUsqd as a function ofq
for several values ofN. Within the accuracy of our data, all curves
intersect atqc=0.117s5d. The value ofUsqd at the intersection is
U* =0.61s2d.

FIG. 4. Log-log plot ofdUsqd /dq at q=qc versusL. The solid
line is the best fit with slope 1/n=0.94s6d.

FIG. 5. Susceptibilityxsqd as function ofq for several values of
N.

FIG. 6. Log-log plot of the susceptibility atqc versusL. From it
we estimate the critical exponentg /n=1.51s4d as the best fit of data
points.
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IV. CONCLUSION

We have studied the majority-vote model on Voronoi-
Delaunay random lattices with periodic boundary conditions.
These lattices possess natural quenched disorder in their con-
nections. We verified whether only this type of disorder is
significant to obtain critical exponents different of those
found for this model in the regular latticesthat have the same
exponents of the Ising model in two dimensionsd. We mea-
sure the exponentsg /n , b /n, and n. The best fit of these
exponents providedn=1.06±0.08, g /n=1.51±0.04, and
b /n=0.112±0.004 andU* =0.61±0.02. The critical expo-
nentsb /n andg /n are different from the exact values of the
Ising model and majority-vote model on a regular square
lattice f22g. Our results are in agreement with the results
obtained by Camposet al. f21g that studied this same model

on a small world network presenting quenched disorder and
long-range interactions. They found that the critical expo-
nents depends on the shortcuts introduced in the network. In
summary we showed here that the presence of quenched con-
nectivity disorder is enough to alter the exponentsb /n and
g /n of the pure model and therefore that disorder is a rel-
evant term to such non-equilibrium phase-transition. How-
ever, the critical value of the fourth-order cumulant remains
the same as that of the pure model.
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