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Majority-vote model on a random lattice
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The stationary critical properties of the isotropic majority vote model on random lattices with quenched
connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical
exponentsy and B8 are found to be different from those of the Ising and majority vote on the square lattice
model and the critical noise parameter is found togpe0.117+0.005.
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I. INTRODUCTION on a regular square lattice. However, a ragibv remains
... essentially the same. They also found numerical evidences

f idealized statistical T i t variety of fi Idnthat the specific heat on this random system behaves as a
ot ldealized staustical geometry in a great variety of hie Spower law fora=0 and as a logarithmic divergence far

[1-4]. Besides its potential to describe the topology in SeV-_g 5 anda=1.0.

eral condensed matter problems, the comparison of the uni- It has been argued that nonequilibrium stochastic spin
Is'ys'[ems on regular square lattice with up-down symmetry
fall in the universality class of the equilibrium Ising model
[7]. This conjecture was found in several models that do not
obey detailed balancgl8-2(. Camposet al. [21] investi-

. SR i ‘gated the majority-vote model on small-world network by
lar, according to the Harris criteridi] valid for the random- rewiring the two-dimensional square lattice. These small-

t)hontd pa(;gd|gm., ranldlom dlSO(rjd?l’ 1S m?rr]gmally .:Inp;]ortetmt .f[‘?world networks, aside from presenting quenched disorder,
& two-dimensional {Sing model since the Specilic heat Critl o, possess long-range interactions. They found that the

cal nggotnelnttt]mzo._tl;:owever, th|sd_cr|ter|og_ Cotl.“d not kt))e critical exponentsy/ v and B/ v are different from the Ising
applied to fattices with a nonperiodic coordinalion NUMDEr.,,yq| gng depend on the rewiring probability. However, it

For thege modelsl, Ll\J]C[<nl£g floETll]"ateq atﬁrlterloT tOISUtCh was not evident that the exponents change was due to the
cases. For example, Janseal. » uSINg th€ SINGIE-CIUSIEr ;5 jared nature of the network or due to the presence of

I\ggnte Cdar_lo updelt_te algo?thrEZ], _rew|e|tgh;uhng|t¢_echn|qtaesl long-range interactions.
[13], and size scaling analysig4], simulate the Ising mode Here, we analyze a relatively simple nonequilibrium

in a two-dimensional Voronoy-Delaunay random lattice. : : : :
o ‘model with up-down symmetry in a random lattice with
They calculated the critical exponents and found that th|s% P y Y
h

tices is also the subject of intense reseaféh9]. The

randomness considered in these studies were either by r
dom variation of the coupling strengths, random deletion o
bonds or sites, or by spatially correlated lattices. In particu

random system belongs to the same universality class as t yenchedconnectivitydisorder(a=0), namely the isotropic
y 9 y ajority vote mode[22]. Our main motivation is to investi-

pu[l'er-lteW(\)/;)drgirilgzrlgrjzgor:zzi\lsgrelzlﬁslsz:\n%rr;éoi?disor dere dgate whether only the presence of quenched lattice disorder

. L s - “is capable of modifyng the exponengsy and 8/ v using the
lattice exhibiting a random coordination number that V.a.”es\/oror?oi-Delaunay fr)z/;\n%om IattFi)ce. gfjr numeﬁrical res%lts sug-
from 3 to 2, depending on the ”“mber of sites. In a.dd't'on'gest that the critical exponents, in the stationary state, are
the distance between nearest neighbors changes in a faNifferent from those of the Ising model and the isotropic

dpm way from site to site. Limaet al. used a two- majority vote model on a square lattice. In what follows we
dimensional Voronoi-Delaunay lattice to study the ferromag-

netic Ising mode[15] and the Potts modéLé]. As the bond will utilize Monte Carlo simulations and finite-size analysis.
length between the first neighbors varies randomly from
neighbor to neighbor, they considered a coupling factor de- [l. MODEL AND SIMULATION

caying exponentially as For each point in a given set of points in a plane, we

J;j = Joexpl(-ary), (1)  determine the polygonal cell that contains the region of space

nearest to that point than any other. We considered two cells

wherer;; is the relative distance between siteandj, Jois  neighbors when they possess an extremity in common. From

a constant, and=0 is a model parameter. In R¢fL5] they  this Voronoi tessellation, we can obtain the dual lattice by the
calculated the critical point exponenigv, B/v, andv, and  following procedure.

concluded that this random system belongs to the same uni- (@) When two cells are neighbors, a link is placed be-
versality class as the pure-two dimensional ferromagnetitween the two points located in the cells.
Ising model. In Ref[16] they studied the three-state Potts (b) From the links, we obtain the triangulation of

model and found that critical exponentsand v are different  space that is called the Delaunay lattice.
from the respective exponents of the three-state Potts model  (c) The Delaunay lattice is dual to the Voronoi tessel-
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lation in the sense that its points correspond to cells, links to
edges and triangles to the vertices of the Voronoi tessellation. 0.8
We consider a two-dimensional majority vote model, on this + N=256
Poissonian random lattice, definf2R,23 by a set of “vot- x N=512
ers” or spins variableés;} taking the values +1 or -1, situ- 061 o N=1024
ated on every site of a Delaunay lattice withsites and ) A 4 N=2048
S . S . > o N=4096
periodic boundary conditions, and evolving in time by single ot o No8192
spin-flip like dynamics with a probability;, given by 204 ‘t:o"x *+ B
Sl x t
OAOOxx+++
1 AOQ xx ++++
wi(o) = | 1-(1-29)0; E Ti+s| | (2 Pa% M Ty
2 s 0.2 Fh3 x%,h:**m
* oﬂ Q
,. h 0
whereS(x) =sgn(x) if x# 0, S(x)=0 if x=0, and the sum runs oot b
over all nearest neighbors of. In this lattice, the coordina- 0 A TP TR SRR SN M
806 008 010 012 014 006 008 020

tion number varies locally between 3 and The control
parameten plays the role of temperature in equilibrium sys-

tems and measures the probability of aligning antiparallel to  FIG. 1. Magnetizatiom(q) as a function of the noise parameter

the majority of neighbors.

For simplicity, the length of the system is defined here in
terms of the size of a regular lattice=N2. We perform
simulations for different lattice size=2', wherei varies
from 8 to 14. For each size, we generated 50 randomly cho-

the next one was obtained as followa). Choose a spifi} at
random.(b) Generate a random numbeuniformly distrib-
uted between zero and or(e) Flip spini whenr <w;(o). In

du

=L+ ],

dq
sen lattice realizations, where each simulation started with §here, g, andy are the usual critical exponents(x) are
random configuration of spins. From a given configurationha finite size scaling functions with

x=(q- o)L

g for several values of the system silke

(8)

9)

our simulations, X 10* Monte Carlo steps were required for
attaining the stationary state. After that, we estimated th

being the scaling variable, and the bracKdts - - -] indicate
é:orrections—to—scaling terms.

averages, for any lattice size, using® Monte Carlo steps.

We define the variablen=2=,0:/N. In particular, we
were interested in the magnetizatip?2,24], susceptibility
and the reduced fourth-order cumulant:

Ill. RESULTS

In Fig. 1 the magnetization is shown as a function of the
noise parametefq) for several values ok. As can be no-
ticed there is a phase transition from an ordered dtslte

m(a) = [{|mM])]ay, 3 . I .
(@ =[{m) e, ® >0) to a disordered statgM, = 0). This figure displays that
for g> g, the magnetization disappears when larger values of
x(@) = NI{m?) = (|m))?], . (4) L are considered, whereas it reaches a finite valuegfor
. -0.4
(m")
U(q) = [1 - , (5
3(mb? I,
0.5~
where(:--) stands for a thermodynamics average gnd,,
square brackets for averages over the 50 realizations. We
calculated the error bars from the fluctuations among realiza- =
tions. Note that these errors contain both, the average ther- S-0.6
modynamic error for a given realization and the theoretical ™
variance for infinitely accurate thermodynamic averages
which is caused by the variation of the quenched random ok
geometry of the 50 lattices. )
These quantities are functions of the noise paramgter
and obey the finite-size scaling relations
45— 3!0 ' 3!5 ' 4!0 ' 4!5 5.0
(M) = LA 0L L + -], (6) InL
FIG. 2. Log-log plot of the magnetization @t q. versusL. The
X= L"V’fo(x)[l + -0, (7) solid line is the best fit with slope8/ v=-0.1124).
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FIG. 3. Reduced fourth-order cumulddtq) as a function ofy FIG. 5. Susceptibilityy(q) as function ofg for several values of
for several values ofl. Within the accuracy of our data, all curves N.
intersect atg.=0.1175). The value ofU(qg) at the intersection is
U*=0.61(2).

) o To obtain the critical exponent, we calculated numeri-
<0 In Fig. 2 a log-log plot of the magnetization @€q.  ¢4jly U’(q)=dU(qg)/dq at the critical point for each value of
versusL is shown. The ratio between the pnucgl eXponent) the results are in good agreement with the scaling relation
B/v=0.112+0.004 is the slope of the straight line fitted to 7). Then, we plotted )’ versus IrL, as displayed in Fig 4.

the data points. Within Fhe_ numerical accuracy, we found th -The straight line represents the best fit to the data points. The
these exponents are distinct from the exponents characteriz;

ing the class of universality of the equilibrium Ising model ili%%+%\gess 1#=0.94£0.06, which corresponds to
22]. TR .

[ 1]'0 determinate the critical point the reduced fourth-order N Fi9. 5, we have Irx(q) as a function ofg for several
cumulantU is plotted againsg. In Fig. 3, the critical point, values ofL. In order to study the universality of the model,
is estimated when all curves, for different sizesntersectin  the ratioy/ v was estimated from the log-log plot of the value
the same point. We getq,=0.117+0.005 and U* of the susceptibilityy(q.) versusL. We estimated the critical
=0.61+0.02. The value of)* is, considering the error bar, €xponenty/»=1.51+0.04 from the best fit of data points, as
the same as the one obtained for Ising model on a squaféisplayed in Fig. 6. It is worth mentioning that in Figs. 1, 3,
lattice with periodic boundary condition$*=0.611+0.001. and 5 we do not include=128 because of its large compu-
Another way of getting the critical point is through the rela- tational demand.

tion of scale g¥,(L)=g.+aL™*”, where we get q.

=0.117+0.003 using’=1.06.
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FIG. 6. Log-log plot of the susceptibility &, versusL. From it

FIG. 4. Log-log plot ofdU(q)/dq at q=q. versusL. The solid  we estimate the critical exponeptr=1.51(4) as the best fit of data
line is the best fit with slope /=0.946). points.
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IV. CONCLUSION on a small world network presenting quenched disorder and

We have studied the majority-vote model on Voronoi- long-range interactions. They fqund that the critical expo-
Delaunay random lattices with periodic boundary conditionsN€nts depends on the shortcuts introduced in the network. In
These lattices possess natural quenched disorder in their copdmmary we showed here that the presence of quenched con-
nections. We verified whether only this type of disorder ishectivity disorder is enough to alter the exponefis’ and
significant to obtain critical exponents different of those ¥/ ¥ Of the pure model and therefore that disorder is a rel-
found for this model in the regular lattigthat have the same €vant term to such non-equilibrium phase-transition. How-
exponents of the Ising model in two dimensiprigle mea-  €Ver, the critical value of the fourth-order cumulant remains
sure the exponents/v, B/v, and v. The best fit of these the same as that of the pure model.
exponents providedv=1.06+£0.08, v/»=1.51£0.04, and
B/v=0.112+0.004 and_J*=0.6li0.02. The critical expo- ACKNOWLEDGMENTS
nentsgB/v andy/ v are different from the exact values of the
Ising model and majority-vote model on a regular square We are grateful to Marcelo Leite Lyra for valuable com-
lattice [22]. Our results are in agreement with the resultsments and suggestions. This work was supported by CNPq,
obtained by Campost al.[21] that studied this same model FAPEPI, and FAPEAL, Brazil.
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